그간 CT 영상 분석을 통해 코로나19 폐렴과 세균성 폐렴을 정확히 구분하는 것엔 한계가 있어왔다. 두 폐렴의 차이가 미미하고, 3차원 영상 내의 병변들을 일일이 확인하고 분류하는 것이 어려워, 최근 여러 분야에서 좋은 성능을 보이는 딥러닝 모델들도 성능이 제한적이었다.
박상현 교수팀은 3차원 영상 내의 병변들을 일일이 확인하지 않더라도 인공지능이 자동으로 CT 영상 내 주요 병변들을 주목하여 분류를 수행할 수 있는 모델을 새롭게 제안했다. 박상현 교수팀은 여러 사례들을 통합적으로 고려해 최종 결정을 내리는 문제에 사용되던 다중인스턴스학습을 활용, 새로운 딥러닝 모델을 개발했다.
이 때, 모델의 성능 향상을 위해 CT 영상에서 폐렴 병변들의 위치를 집중적으로 확인할 수 있는 ‘Attention 모듈’을 접목시켰다. 추가적으로 비지도학습 기반의 Contrastive Learning을 이용해 환자별 특징 추출 성능을 극대화 시켜, 새롭게 개발한 모델의 분류성능을 크게 개선했다.
새롭게 개발한 딥러닝 모델은 코로나19 진단에 있어 최종적으로 98.6%의 정확도를 보였으며, 기존에 제안됐던 다른 다중인스턴스학습 기법들의 성능을 크게 웃돌았다.
박상현 교수는 “이번 연구를 통해 개발한 모델은 코로나19 진단 성능을 크게 향상시켜 주었을 뿐만 아니라, 다중인스턴스학습 인공지능 분야에도 큰 개선을 보인 모델이다”며, “팬데믹 극복에 기여할 수 있을 것으로 기대되고, 향후 관련 기술을 좀 더 개선한다면 다양한 폐렴 진단에 활용될 수 있을 것”이라 말했다.
홍성철 기자 newswaydg@naver.com

뉴스웨이 강정영 기자
newswaydg@naver.comnewsway.co.kr
저작권자 © 온라인 경제미디어 뉴스웨이 · 무단 전재 및 재배포 금지
댓글