최근 인공지능 기술을 바탕으로 이미지를 생성하고 변환하는 딥러닝 연구가 활발하다. 기존의 연구는 여러 비슷한 특징을 가진 이미지의 집합인 도메인에서 공통으로 나타나는 이미지 정보를 찾는 것에만 초점이 맞춰져 왔었다.
이 때문에 이미지 정보를 제대로 활용하기 어려워 적용 가능한 데이터와 모델의 성능에 한계가 있었다. 또한 활용한 이미지 정보를 선형적으로 단순하게 구성해, 한 이미지로 변환된 이미지 하나만을 얻을 수 있는 등의 한계가 있다.
임성훈 교수팀은 이미지 정보의 구성이 도메인마다 다를 수 있고 선형적 구성처럼 단순한 구성이 아닐 것이라는 가설을 세웠다. 연구팀은 이미지 정보를 전체적인 형태 정보와 스타일 정보로 뚜렷하게 나눌 수 있는 분리기를 설계했다.
이를 이용해 도메인마다 다른 가중치를 사용해 도메인 간의 차이를 반영할 수 있게 했다. 또한 분리된 이미지 정보들 간의 연관성을 이용해 각 이미지 구성에 알맞은 스타일 정보를 찾는 새로운 신경망 구조를 개발하는 데 성공했다.
연구팀이 개발한 신경망은 한 모델로도 여러 도메인의 이미지 변환이 자유자재로 가능한 장점이 있다. 이에 시각 인지 문제에 연구팀이 개발한 도메인 적응 알고리즘을 적용했을 때, 기존보다 2배 높은 정확도를 보일 수 있었다.
임성훈 교수는 “이번 연구를 통해 개발한 신경망은 이미지 정보에 대한 새로운 분석이 담긴 신경망”이라며 “향후 관련 기술을 좀 더 개선한다면 많은 분야들에 적용되어 인공지능 분야의 발전에 긍정적인 영향을 줄 것으로 기대된다”고 말했다.
홍성철 기자 newswaydg@naver.com
뉴스웨이 강정영 기자
newswaydg@naver.comnewsway.co.kr
저작권자 © 온라인 경제미디어 뉴스웨이 · 무단 전재 및 재배포 금지





댓글